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• The Task: Change detection between two co-registered images

18.9.2020V. Růžička et al.

• The Problem: Large dataset with highly unbalanced class distribution

• The Goal: Lower the annotation effort

2012 2015 GT

Number of patches:

1k changed <<  83k unchanged
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Approach: Active Learning
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▪ Annotated training dataset

V. Růžička et al.

▪ Train a model on training set
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Model design for Active Learning

18.9.2020V. Růžička et al.

shared weights

▪ Siamese network for Change Det.

▪ with shared encoder weights
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Model design for Active Learning
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shared weights

ResNet34

▪ Siamese network for Change Det.

▪ with shared encoder weights

▪ U-Net model architecture

▪ skip connections preserve detail

▪ ResNet34 pre-trained encoder
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Uncertainty estimation for deep learning models
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▪ Explicit ensemble of models:

▪ Train multiple models, average their predictions

▪ Implicit ensembles:

▪ Use stochasticity of regularization processes to simulate multiple forward passes

▪ Monte Carlo Batch Normalization (Teye et al., 2018) – batch normalization in training mode 

during inference:

V. Růžička et al.

score = variance / 

entropy of predicted 

posterior, summed 

over all pixels

Model ensemble predictions Variance
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Experiments
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Methods:

▪ Ensemble of models with either variance or entropy metric (N=5 models)

▪ Monte Carlo Batch Normalization (MCBN) with either variance or entropy 

metric (N=5 forward passes)

Baselines:

▪ Upper bound: train with all change patches in the (fully annotated) training 

set, and a matching number of unchanged patches

▪ Lower bound: replace acquisition function with uniform random sampling 

(with and without ensemble of N=5 models)

V. Růžička et al.
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Results
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▪ All tested methods reach the upper 

bound with ≈1% of the data (850 

samples)

▪ Ensemble method slightly  

outperforms MCBN in early 

iterations

V. Růžička et al.
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Acquisition function prefers balanced patch distribution

18.9.2020

▪ Both tested methods automatically balance acquisition of uncertain 

samples from changed and unchanged patches.

▪ Random baseline converges to the original ratio between classes (1 : 83) 

which leads to poor performance.
V. Růžička et al.
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Conclusion

18.9.2020

▪ Siamese U-Net with ResNet34 encoder for active learning.

▪ Matches the performance of manually balanced dataset with all available 

training patches with a fraction of the labelling effort (only ≈1 % of the data).

▪ Active sample selection automatically balances training set, despite 

extremely imbalanced input data.

▪ Standard approach of explicit ensembles improves faster, but the novel 

MCBN method catches up.

▪ Future work: faster ways to quantify uncertainty to reduce the time bottleneck.
V. Růžička et al.
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Bonus: Active Learning Timing

18.9.2020V. Růžička et al.

MCBN 107 121 131

Ensemble 266 299 334

MCBN 162 160 154

Ensemble 100 103 103

*) All experiments run on a single GeForce GTX 1080Ti GPU (11GB RAM) with Xeon E5-2630v4 CPU using Keras.

-61%

+35%

Avg. Training [min]; last 3 iterations

Avg. Acquisition [min]; last 3 iterations

▪ Training a single MCBN model is 61% faster on average than N=5 Ensemble models

▪ Acquisition evaluation over the whole unlabeled dataset is 35% slower (note that MCBN is 

running in unoptimized training mode with prediction batch size matching the training batch size)
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Iteration:

 Random  MCBN  Ensemble

MCBN 107 121 131

Ensemble 266 299 334

Avg. Training [min]; last 3 iterations

Avg. Acquisition [min]; last 3 iterations

MCBN 162 160 154

Ensemble 100 103 103

Whole run [min]; 10 iterations, not cumulative

-61%

+35%

-32% in the 

last iteration

*) All experiments run on a single GeForce GTX 1080Ti GPU (11GB RAM) with Xeon E5-2630v4 CPU using Keras.
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Thank you for your attention!

Any questions?

Deep Active Learning in Remote Sensing 

for data efficient Change Detection
ECML/PKDD Workshop on Machine Learning for Earth Observation, 2020


