

Deep Active Learning in Remote Sensing for data efficient Change Detection

ECML/PKDD Workshop on Machine Learning for Earth Observation, 2020

Vít Růžička, Stefano D'Aronco, Jan Dirk Wegner, Konrad Schindler

EHzürich

• The Task: Change detection between two co-registered images

- GT
- The Problem: Large dataset with highly unbalanced class distribution

Number of patches: 1k changed << 83k unchanged

• The Goal: Lower the annotation effort

ETH zürich

Approach: Active Learning

Annotated training dataset

• Train a model on training set

ETH zürich

Approach: Active Learning

Annotated training dataset

Unlabeled dataset:

• **Train a model** on training set

- Select additional training samples using trained model representation
 - Idea: add samples with high uncertainty to improve the model where it is uncertain

EHzürich

Approach: Active Learning

Annotated training dataset

Train a model on training set

Ask the user to provide labels
 for selected samples

Unlabeled dataset:

- Select additional training samples using trained model representation
- Idea: add samples with high uncertainty to improve the model where it is uncertain

Approach: Active Learning

Annotated training dataset Ask the user to provide labels Next AL for selected samples iteration Unlabeled dataset: X_1 X_2 **Acquisition function** X_1 X_2 , **Train a model** on training set Select additional training samples using trained model representation Idea: add samples with high *uncertainty* to improve the model where it is uncertain

Model design for Active Learning

shared weights

	8x8x512 8x8x512 →		

- Siamese network for Change Det.
 - with shared encoder weights

Model design for Active Learning

shared weights

- Siamese network for Change Det.
 - with shared encoder weights
- U-Net model architecture
 - skip connections preserve detail

Model design for Active Learning

ResNet34

shared weights

- Siamese network for Change Det.
 - with shared encoder weights
- U-Net model architecture
 - skip connections preserve detail
- ResNet34 pre-trained encoder

Uncertainty estimation for deep learning models

Explicit ensemble of models:

- Train multiple models, average their predictions
- Implicit ensembles:
 - Use stochasticity of regularization processes to simulate multiple forward passes
 - Monte Carlo Batch Normalization (Teye et al., 2018) batch normalization in *training mode* during inference:

Model ensemble predictions

Variance

score = variance /
entropy of predicted
posterior, summed
over all pixels

Experiments

Methods:

- **Ensemble of models** with either variance or entropy metric (N=5 models)
- Monte Carlo Batch Normalization (MCBN) with either variance or entropy metric (N=5 forward passes)

Baselines:

- Upper bound: train with all change patches in the (fully annotated) training set, and a matching number of unchanged patches
- Lower bound: replace acquisition function with uniform random sampling (with and without ensemble of N=5 models)

ETH zürich

Results

- All tested methods reach the upper bound with ≈1% of the data (850 samples)
- Ensemble method slightly outperforms MCBN in early iterations

EHzürich

Acquisition function prefers balanced patch distribution

- Both tested methods automatically balance acquisition of uncertain samples from changed and unchanged patches.
- Random baseline converges to the original ratio between classes (1 : 83) which leads to poor performance.

Conclusion

- Siamese U-Net with ResNet34 encoder for active learning.
- Matches the performance of manually balanced dataset with all available training patches with a fraction of the labelling effort (only ≈1 % of the data).
- Active sample selection automatically balances training set, despite extremely imbalanced input data.
- Standard approach of explicit ensembles improves faster, but the novel MCBN method catches up.
- Future work: faster ways to quantify uncertainty to reduce the time bottleneck.

Bonus: Active Learning Timing

Avg. Training [min]; last 3 iterations

 MCBN
 107
 121
 131
 5
 -61%

 Ensemble
 266
 299
 334
 -61%

Avg. Acquisition [min]; last 3 iterations

MCBN	162	160	154	125%
Ensemble	100	103	103	+33%

- **Training** a single MCBN model is 61% faster on average than N=5 Ensemble models
- Acquisition evaluation over the whole unlabeled dataset is 35% slower (note that MCBN is running in unoptimized *training mode* with prediction batch size matching the training batch size)

*) All experiments run on a single GeForce GTX 1080Ti GPU (11GB RAM) with Xeon E5-2630v4 CPU using Keras. V. Růžička et al. | 18.9.2020 | 15

Bonus: Active Learning Timing

480 **Avg. Training** [min]; last 3 iterations 420 **MCBN** 131 107 121 360 -61% Ensemble 266 299 334 300 Time (min) -32% in the 240 Avg. Acquisition [min]; last 3 iterations last iteration 180 120 **MCBN** 162 160 154 +35% 60 Ensemble 100 103 103 **Iteration:** 2 3 9 10

- **Training** a single MCBN model is 61% faster on average than N=5 Ensemble models
- Acquisition evaluation over the whole unlabeled dataset is 35% slower (note that MCBN is running in unoptimized *training mode* with prediction batch size matching the training batch size)

*) All experiments run on a single GeForce GTX 1080Ti GPU (11GB RAM) with Xeon E5-2630v4 CPU using Keras. V. Růžička et al. | 18.9.2020 | 16

Whole run [min]; 10 iterations, not cumulative

Deep Active Learning in Remote Sensing for data efficient Change Detection

ECML/PKDD Workshop on Machine Learning for Earth Observation, 2020

Vít Růžička, Stefano D'Aronco, Jan Dirk Wegner, Konrad Schindler

Thank you for your attention!

Any questions?

