

Unsupervised Change Detection of Extreme Events Using ML On-Board AI + HADR @ NeurIPS 2021

Vít Růžička, Anna Vaughan, Daniele De Martini, James Fulton, Valentina Salvatelli, Christopher Bridges, Gonzalo Mateo-Garcia, Valentina Zantedeschi

Google Cloud Invidia - SCAN® Planet.

• The Problem:

Current state of remote sensing:

• The Problem:

Current state of remote sensing:

• The Task:

Cesa / FDL

FRONTIER Development Lab

Detection of anomalies on-board

The Problem:

Current state of remote sensing:

The Task:

Detection of anomalies on-board

AIRBUS CATAPULT

Unsupervised Change Detection The Goal: of Extreme Events on-board of the satellite

Baseline: Detecting change in image space

Image space comparison

Google Cloud Invidia - SCAN® (planet.

Google Cloud Invidia - SCAN® (planet.

AIRBUS CATAPULT

Approach: Detecting change in latent space

Google Cloud Invidia - SCAN[®] (planet.

AIRBUS CATAPULT

Extreme Event examples

BEFORE

• We want to detect all kinds of change, not just one

AFTER

Prediction example:

GT

OURS:

BASELINE:

Results

Area under the precision-recall curve shown in percentage. (averaged over 5 runs)

	Landslides	Floods	Hurricanes	Fires	
Cos baseline (memory 1)	62.9	37.8	51.3	81.8	
Cos embedding (memory 1)	59.9	44.8	67.6	83.3	
KL-divergence (memory 1)	25.8	24.7	30.1	73.1	
Cos baseline (memory 3)	62.2	37.8	57.0	86.5	
Cos embedding (memory 3)	75.9	44.3	72.6	91.3	

Results

Area under the precision-recall curve shown in percentage. (averaged over 5 runs)

	Landslides	Floods H	lurricanes	Fires
Cos baseline (memory 1)	62.9 🥎 - 5%	37.8 🦱 +19%	51.3 📉 +32%	81.8 📉 +2%
Cos embedding (memory 1)	59.9 🥖	44.8	67.6	83.3 🖉
KL-divergence (memory 1)	25.8	24.7	30.1	73.1
Cos baseline (memory 3)	62.2 +22%	37.8 +17%	57.0 +27%	86.5
Cos embedding (memory 3)	75.9 💋	44.3	72.6 💋	91.3 🖉

• Our **proposed method outperforms the baseline solution** in most scenarios when using memory = 1 and **in all scenarios with memory = 3**.

Results on dedicated hardware*

*) Xilinx Pynq, 650MHz ARM Cortex-A9 CPU, 512MB RAM Used on ESA PhiSat-1, OPSSAT, ...

Showing cos embedding with memory 3

Encoding area of 25km²

	Landslides	Floods	Hurricanes	Fires	# params	runtime
small	74.8	44.5	74.8	90.7	I 0.4M	2.1s
medium	75.8	42.8	73.8	91.2	0.9M	4.8s
large	75.9	44.3	72.6	91.3	I I 1.5M	13.9s

Results on dedicated hardware*

*) Xilinx Pynq, 650MHz ARM Cortex-A9 CPU, 512MB RAM Used on ESA PhiSat-1, OPSSAT, ...

Showing cos embedding with memory 3

Encoding area of 25km²

	Landslides	Floods	Hurricanes	Fires	# params	runtime
small	74.8 -1%	44.5	-0.5% 74.8 +3%	90.7 -0.6%	0.4M	2.1s
medium	75.8	42.8	73.8	91.2	0.9M	4.8s - 85 %
large	75.9	44.3	72.6	91.3	1.5M	13.9s

• While maintaining the model's performance (±3%) we show that the model size and it's runtime can be greatly reduced (by 85%).

Conclusions:

AIRBUS CATAPULT

- <u>RaVÆn</u>: variational autoencoder for unsupervised change detection
- Demonstrated that this can be used to detect **new types of disaster hot-spots**
- Developed the RaVÆn library & dataset ready for **public release**
- Achieve competitive results on

Google Cloud Invidia - SCAN[®] (planet.

constrained hardware (Xilinx-Pynq)

Unsupervised Change Detection of Extreme Events Using ML On-Board AI + HADR @ NeurIPS 2021

Vít Růžička, Anna Vaughan, Daniele De Martini, James Fulton, Valentina Salvatelli, Christopher Bridges, Gonzalo Mateo-Garcia, Valentina Zantedeschi

Thank you for your attention!

Any questions?

Google Cloud Invidia - SCAN® (planet.

